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Entropy and the central limit theorem in quantum mechanics 
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Research Centre Bielefeld-Bochum-Stochastics, Bielefeld University, D-4800 Bielefeld 1, 
Federal Republic of Germany 

Received 14 July 1986 

Abstract. We give a short proof that any infinitely divisible even representation of a Clifford 
algebra or a CAR algebra is quasi-free, and of Hudson’s central limit theorem for fermions. 
We show that the entropy of any even state of the CAR, Clifford or CCR algebra is less 
than or equal to the entropy of the quasi-free state with the same two-point function. 

1. Introduction 

The concepts of infinitely divisible cyclic representations of a group [ l ] ,  Lie algebra 
[2] and Clifford algebra [3] were introduced in the references given and the related 
concept of factorisable representations for groups was independently formulated in 
[4]. When the group or Lie algebra is Abelian, we get infinitely divisible random 
variables [5] as a special case. We can then construct a stochastic process with 
independent increments or a generalised random field with independent ‘values’ at 
every point [6]. Another special case is the class of ‘ultralocal’ representations of the 
canonical commutation relations [7] first constructed in a similar way by Araki [8]. 
For a general Lie algebra, we get a representation of current algebra [ 1, 2, 4, 71. Here, 
the infinite divisibility is equivalent to conditional positivity analogous to that known 
in probability theory [5], theorem A 1.1. This is better expressed in terms of group 
cocycles [4] or Lie algebra cocycles [2]. A similar construction can be given for 
associative algebras [9]. 

Non-trivial cocycles exist for various groups [4,10] and we get examples of Gaussian 
and some non-Gaussian boson quantum fields. For a nice survey of the mathematical 
questions, see [ l l ] .  

Infinitely divisible representations of a Clifford algebra or a C A R  algebra lead to 
the construction of ultralocal fermion fields [3], but we showed that only quasi-free 
fields can be obtained in this way, because all infinitely divisible even representations 
of the CAR algebra are quasi-free [3], theorem 2.7. Some people hope that this rather 
limiting result would not apply to the more general fermionic structures of [9, 12, 131. 

In this paper we give a straightforward proof of this result (also for the real case, 
which was omitted in [3]). It is a consequence of the boundedness of the fermion 
field, and the additivity of the cumulants for independent fields [3]. The latter follows 
easily from the properties of the ‘generating element’, i.e. generating function with 
values in a Grassmann algebra [14-161. This allows a generalisation of the concept 
of a?-divisibility to superalgebras. A nice unified treatment of bosons and fermions 
can be given in terms of Hopf products [17, 181. 
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Hudson's central limit theorem [19] also follows easily. Using this, and also the 
boson version [20], we show that the entropy of the quasi-free state wo,  with the same 
two-point functions as a state w, is greater than or equal to the entropy of w. 

2. Preliminaries 

Let %' be a real Hilbert space, and P( 2) the associative non-commutative polynomial 
algebra over 2, We impose the relations 

ab + ba - (a, b);yl= 0 a , b ~ X  (2.1) 

on B(%'), i.e. we form the quotient of B by the two-sided ideal J generated by the 
LHS of (2 .1) .  Note that addition and real scalar multiplication in X agree with formal 
addition and real scalar multiplication in P(X) for elements of 2, i.e. X-, P(%) is 
an R-linear injection. We take complex scalars for P. Finally we make P/ J = Cl( %') 
into a *-algebra by defining A = if A E C, a* = a for a E 2, and extend * by induction 
to Cl(%') from (AA)* = XA*, (AB)*  = B*A* when A E @, A, B E Cl(%). This *-algebra 
is the Clifford algebra over %'. 

There is a parallel definition of the algebra of the canonical anticommutation 
relations over a complex Hilbert space X ,  denoted CAR( X ) .  For this, let a + d be the 
(antilinear) identification of X with its dual, X*. In P( %'@ X * ) ,  for which the injection 
%'+ B( XO X * )  is C-linear and X* + P( %'@ F) is antilinear, we impose the relations 

ab+ba=O a6+ 6a = (b, a)% a, bE X 

(and here we use the physicists' convention for scalar product-linear in  the second 
variable). Finally we introduce a *-operation, by extending ( a ) *  = d, etc. 

If %' is a real or complex Hilbert space, %(X) will denote the Clifford or CAR 

algebra over 2. The subspace XE CAR(%') is the space of creation operators and the 
subspace X* E CAR( 2) is the space of annihilation operators. 

K 
is cyclic (i.e. r('U)SZ is dense in K )  and r is a homomorphism from 'U to bounded 
operators on K .  Two cyclic representations ( U , ,  R I ,  K , )  and (a2 ,  R,, K,) are said to 
be cyclic equivalent if there exists a unitary map W :  K ,  onto K 2  such that WR, = SZ2 
and W r ,  = r2 W. 

%(%) is Z,-graded, i.e. is a direct sum of even and odd parts, with obvious rules 
for products. A cyclic representation (7,  SZ, K )  is said to be even if (a, r ( A ) R )  = 0 
for all odd A. If (r,Cl, K )  is even, then K = K O @  K , ,  where K O  contains the odd 
vectors and K ,  the even. On such a space the parity operator 

A cyclic representation of 'U is a triple ( r ,  R, K )  where K is a Hilbert space, 

p = -1,o 1, 

is well defined, and p r ( a )  = - r ( a ) p ,  a E X.  
Suppose ( r , ,  R I ,  K , )  and (r,, R,, K,) are two ever? cyclic representations of a(%',) 

and a(%',). Then we can construct a cyclic representation r, of %(%' ,@X2) ,  acting 
on K 1 @ K 2 ,  with cyclic vector R,@R,, by 

r ( a l  = r l (a l )@ 1 K 2 + P K I  @ r 2 (  a2) a , ,  XI, X2. 
The action of r on a general polynomial is then determined by the requirement that 
7 is a *-homomorphism. 
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This construction [3], written T = T ,  A r2,  sometimes called the Chevalley product 
[ 171, is the natural analogue of the tensor product for cyclic group representations, 
which in turn is the generalisation of adding independent random variables. The 
Chevalley product has some natural associativity, e.g. T ,  A ( r2 A T ) )  and (rl A r2) A 7r3 

are cyclic equivalent. 
If we put 2, = , . . = Zk = 2 we can restrict a product representation T = T ,  A .  . . A .rrk 

to the diagonal {a 0 a 0, . .@ a :  a E 2}. We do not quite get a representation of %( 2), 
but what we called a k-representation [3]; namely a + k - ” 2  T ( U )  A . .  . A  ~ ( a )  (k-factors) 
restricted to the cyclic space generated from the product of the cyclic vector, is a cyclic 
representation, called rrk. 

Dejnition [3]. We say a representation ( T ,  R, K )  of %( 2) is co-divisible if for every 
integer k >  0, there exists a cyclic representation (4 ,  Y, L )  such that T is cyclic 
equivalent to 4k. 

We now define the generating functional [ 13, 141. For CI( 2) we furnish 2 = %* 
with a Grassmann multiplication. We will use the symbol r ]  E 2 when its Grassmann 
nature is meant. We assume r] anticommutes with a E %, Z regarded as a subset of 

Let ( U , )  be an orthonormal basis in % and let (7,) be the components of r] in this 
Cl(%). 

basis. Then define the Grassmann element associated to ( T,  R, K ) by: 

G,(r]) = (exp iT(ak)r]k)E N W .  
Here, we sum over repeated indices and ( . )  denotes (R, * Cl);  A(%) is the fermion 
Fock space over X, i.e. the Hilbert space of antisymmetric tensors. 

We see that the nth moment ( T ( u ~ ) .  . . r ( a , , ) )  is the coefficient of ( l / n ! ) r ] l r ] 2 . .  . r],, 

in the formal power-series expansion of G. Convergence is no worry, since any given 
nth moment can be evaluated using only the relevant n-dimensional subspace of %. 

For CAR(%) we introduce a Grassmann multiplication in X and in E*, with 
elements denoted r] or f. These anticommute with each other and with the odd elements 
of CAR(%). Then define 

G ( r ] ,  t ) = (exp i ( ( a, 16 + 4 E, 1 7,)) E A( X @  %* 1 
where (a,) is an orthonormal basis in % and ( E , )  is the corresponding basis in X*. 

Then if G I , .  . . , Gk are the characteristic elements of representations T , ,  . . . , rk 
of a(%,),  . . . , a ( X k ) ,  then the Grassmann product G,G2 . . . Gk is the characteristic 
element of r1 A . .  . A ??k [15]. 

The Grassmann element log G generates the truncated functions, which are the 
analogues of the cumulants. Clearly, the cumulants add under Chevalley product. 
(This result was proved in [3].) Specialising to the diagonal we see that the cumulants 
of the k-representation r A T A . . . A T (k-factors) are k times the cumulants of T. This 
is the result we need. 

3. The quasi-free nature of infinitely divisible representations 

Theorem [3]. Let ( T ,  R, K )  be an oo-divisible even representation of a =  C l ( 2 )  or 
 CAR(^). Then T is quasi-free in that log G(r])  is a (positive-definite) quadratic form 
in r] (for Cl(%?)) or log G(r], 5 )  is a (positive-definite) sequilinear form. Conversely, 
every quasi-free representation has this form and is a-divisible. 
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Proof: We show all cumulants of order > 2  vanish. The positive-definiteness of the 
second cumulant follows from that of the second moment, to which it is equal if the 
representation is even. 

For any representation T, the operators ~ ( a ) ,  (or ~ ( a ) ,  T ( H )  for CAR(%')) are 
bounded by Ilall. Hence if IIa,II = 1, j = 1 , .  . . , m, the mth moment obeys 

I (da1 )  . . . 4 Q m ) ) I  s 1. (3.1) 

Denote the moments by (a ,  . . . a,) and the cumulants by ( a ,  . . . both these are 
homogeneous of degree m. Now, the moments are written as a sum (over partitions) 
of products of cumulants 

( ~ ~ . . . ~ , ) = { ~ ~ . . , ~ , ) ~ +  ~ ( ~ ~ . . . ) T . . . ( . . . ~ , ) T .  
partitions 

The partitions of (1 . . . m )  form a lattice, and we can form the (Mobius) inversion and  
write ( U ,  , , , as a sum of products of moments of order s m .  Let # m  denote the 
sum of the absolute values of all the (integer) coefficients in this formula. It follows 
from (3.1) that for any cyclic representation T of 9I 

I(T(al). . . n ( a m ) ) T I  #m* 
Now suppose 7~ is a-divisible. Then for any n there is 4 such that 

(4  A 4 A , . . A 4 )  = $lfl. 
T =  n - l / 2  

The additivity of cumulants then says that the cumulants of 4 A . .  . A 4 are n times 
those of 4, and the homogeneity says that the mth cumulant of 4" is (l/&), times 
that of C$ A . .  . A 4, and is thus n( l /&)"  times that of 4:  

( T ( a l )  * * * T ( a m ) ) T =  n(1 / f i )m(4(a l ) .  . . 4 ( ' m ) ) T  

< (#m)n"-"/' for any n. 

Letting n + cc gives 

(T(al)  . . . T ( a m ) ) T = O  m > 2 .  

The converse is obvious. 
Hudson's central limit theorem also follows at once from the cumulant addition 

theorem: replace T by T " ;  this does not change the second moments. The mth cumulant 
of T' is bounded by n ( l / f i ) "  x mth cumulant of p. This goes to zero as n +CO. Thus 
T" converges to the even quasi-free representation with the same two-point functions. 
This convergence is strong over finite-dimensional subsets of X, 

4. The quasi-free reduction for fermions 

Given any even state w on % ( E ) ,  we can define wQ to be that quasi-free state with 
the same second moments. We show that w + w Q  is the best approximation to 0, in 
the sense that wQ is the state of greatest entropy among all states with the same second 
moments as w. 

Consider, then, %(%'), first where dim %'<moo, and let (7, a, K )  be a cyclic rep- 
resentation. The expectation (a, T(A)R) of any A E %( %') can be written in terms of 
a density matrix &, on A X  as 

(0, d A ) W  = Tr(4nA)  
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where Tr is the trace over AX.  4n is uniquely determined by ( T ,  0) since in the Fock 
representation the %( X) generate all bounded operators. We then define the entropy 
S, of the cyclic representation ( T ,  R, K )  to be 

Clearly, this is the same for any (cyclically) equivalent representation. Since the entropy 
of a tensor product of density matrices is the sum of the entropies of each factor, we 
have S, , ,  "2 = S,, + S,, . Given a density matrix 4 on K ,  O K 2 ,  we obtain the marginal 
states by partial traces Tr2 4 and Tr, 4. Here, Tr, means taking the trace over the 
factor K,. Then [ 2 2 ]  the entropies of 4 are less than or equal to the sum of the 
entropies of the two marginal states. 

Theorem 1 .  Let ( T ,  R, K )  be an even cyclic representation of ?I(%'), where possibly 
dim X =  00. Then T ' = ~ " ' ~ T  A T does not have less entropy than T,  when both are 
restricted to any subalgebra a( Xo)  with X o  c_ X, and dim X o  < 00. 

ProoJ: Restrict to X o .  Let T ~ ,  rTTZ be independent copies of T.  Then K O K  carries a 
representation of S ( X o O X o )  based on the cyclic vector R O R .  Moreover, the term 
A(XoO X o )  = A( Xo)OA(  Xo)  carries the Fock representation nF of ?I( XoO X o )  and 
R O R  is represented by the density matrix 4n04n. 

Now perform the rotation in X o O X o  given by 

j = 1,. . . , dim X o  
a; = (a,+ 1 + 1 + a , ) / v 5  
ay= ( c l ; -  1 - 1 - -a , ) /v5  

where (a , ) , j  = 1 , .  . . ,d im X o  is a basis in X o ,  and ( a i ,  ay) is the new basis in 2CoOX0. 
Let ( a i )  span %and ( a y )  span x". Then A ( X o O X o )  = A(X')OA(X"),though q5nO~n 
does not factor when we write A ( X o ) O A ( X o )  in this way. Now restrict the cyclic 
representation ( T  A T, R O R ,  A( XO 2)) to the subalgebras %( X ' )  and 91( E'), to get 
the marginal representations T ' ,  T" with density matrices 

4' = T r , ( P d 4 n O  4n) 

and 

4"= Tr.,(3(')(4RO4n). 

By the evenness of R, ( T ' ,  4') and (T" ,  4") are cyclically equivalent, and so have the 
same entropy. Hence 

2 s (  77) = s( T A 7 7 )  s( 57') -t s( T " )  = 2 s (  T ' ) .  

Thus S( T ' )  3 S (  7 ) .  

Corollary. The quasi-free reduction w + wQ is entropy non-decreasing since, by 
Hudson's theorem, T + T' + T'-, . . . converges (on any 2I( X0), with dim 2Yo < 00) to 
a quasi-free state. The dimension of the representation space A(XJ is finite, so the 
entropy of the limit is the limit of the entropies, which increase. The second moments 
are conserved at each step, so the limit is rQ, the GNS representation from w Q .  
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5. The quasi-free reduction for bosons 

Let X be a real Hilbert space of even or infinite dimension, and let CT be a non-degenerate 
symplectic form on X. The restriction of a to X o ,  an even finite-dimensional subspace 
of X, might be degenerate; but there always exists an even finite-dimensional subspace 
2 2 %',, on which CT is non-degenerate. For each such 2, let a + W ( a )  be the 
Schrodinger representation of the Weyl relations over Y :  

W(a)  W(b)=e '" '"9b 'W(a+b) 

a, b E 2, and let %(T) be the W*-algebra generated by these { W(a):  a ET}. These 
form an inductive system, and we follow Segal [23] in defining the C*-algebra of the 
CCR over (X, a )  to be the inductive limit of {%(2), 2 s  X, dim Y e a ,  a non- 
degenerate on s}. Call it %(%'). 

Let w be a regular state on a(%), in the sense of [22]; that is, for each 3 as above, 
the GNS representation of w restricted to %(2) gives a Weyl system over (3, a) ,  i.e. 
a strongly continuous representation of the Weyl relations. Then by the Stone-von 
Neumann theorem, { a  + W(a),  a E LZ} is a direct sum of Schrodinger representations, 
and w is given by a density matrix 4,,, on the Fock space r ( C ' )  where 1 = dimc Tc. 
We define the 3-entropy of w to be 

S d w )  = -Td& log dL) 

the trace being taken over T(C'). We say that one regular state w 1  does not have less 
entropy than another, w 2 ,  if Sy(wl)> Sy(w2)  for every even finite-dimensional YE 2 
on which U is non-degenerate. 

Let w be an even regular state, and let wQ be the quasi-free state with the same 
two-point functions as w,  assumed finite. This section is devoted to proving that 
S(oQ) 3 S ( w ) .  The method of proof is to use the central limit theorem to show that 
wQ is the W* limit of a sequence { ~ " w }  of transformations 7" of w ;  we show that 7 
is entropy non-decreasing, and that entropy is continuous on the set of states including 
the limit. The result then follows. 

Cushen and Hudson [20] prove a quantum mechanical central limit theorem for 
one degree of freedom. For more than one degree of freedom, Quaegebeur [21] has 
given a proof, apparently unaware of the earlier work of Cushen and Hudson. We 
quote without proof the following version. 

Theorem 2. Let w be an even regular state of a( 2) with dim X< a, and let a + W( a )  
be the corresponding Weyl equation. Let XI, X 2  be the two orthogonal copies of X 
and let W( a 0 b) = W( a )  O W( b) with cyclic vector w 0 w be the product Weyl system. 
Let 

a + b  a - b  
@(a 0 b) = W {  - 0 -) & ! a  

a, b E 2 and let rw be the state defined by the Weyl system ( @(a BO), w O w )  restricted 
to the cyclic subspace generated from w O w  by acting with @(a@O), a E 2. 

Then T"W converges W* to the quasi-free state wQ with the same two-point functions 
as w. 

We shall also use the following theorem, proved in [24, 251. 

Theorem 3. Let N be a self-adjoint operator on a Hilbert space K with spectrum 
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(0, 1,2,. . .} and multiplicity m (  j )  for eigenvalue j ,  bounded by 

m( j )  K jd  for some K ,  d > 0. 

Let T ( E )  be the set of positive trace-class operators 4 with T r ( 4 N )  s E. Then 

S (  4)  = -Tr( 4 log 4) = O(Tr 4 log Tr 4) (5.1)  

uniformly in T(  E )  as Tr 4 + 0. 
We note that, writing W ( a )  = elRa for a Weyl system W, the transformation r of 

theorem 2 can can be written TU( W ( a ) )  = ( W ' ( a ) ) ,  with W ' ( a )  = eiR'a,  where the 
transformation R + R' is given by 

R'a = ( R l a  + R , a ) / d  

where R I  and R ,  are two cyclic equivalent and independent copies of R. On can easily 
check that all the two-point functions of W' are the same as those of W, if these are 
finite. It follows that all the states { T ~ U } , , = ~ , ~ , . . .  have the same two-point functions, so 
that if w (  N )  = E, then 

for all n. Here, 1 =dim 2, and a , ,  . . . , a, is an  orthonormal basis in Z. We note that 
the particle number N = X i = l  aFa, has spectrum and multiplicity obeying the conditions 
of theorem 3, and so r n w  and wQ give rise to density matrices p obeying (5.1). 

nteorem 4. S ( w Q )  = l imn+m S(T"W). 

ProoJ: Since dim 2< 00, the dimension of the subspace r( no) of r( 2) with particle 
number s n o  is finite. Choose E ;  choose no large enough so that Trr(%]l-(4)  < E ,  for 
all 4 E T ( E ) .  This is possible since, in a basis in which N is diagonal, 

C j Tr(P,4) = E 

where P, projects onto eigenvalue N = j ,  so 

Therefore 

since S is continuous on finite-dimensional spaces 

= lim S (  ~ " w )  + O( E log E )  + O( E log E ) .  
n-cc 

Since this is true for every E > 0, we get S ( w Q )  = limn+m S (  ~ " 0 ) .  

Theorem 5. S ( w Q )  > S ( w ) ,  with equality if and only if w = wQ. The 'if' part is obvious. 

Remark. The first result in this direction is due to Wichmann [ 2 6 ] .  

ProoJ: It is enough, by theorem 4, to show that S(rw) > S ( w ) ,  with equality if and 
only if w = wQ. Now the 'if' part is not quite obvious. We prove it because of its 
independent interest. Thus let w be a regular even state of the CCR over H, with 
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dim H<co. Let HI and H 2  be two copies of H and form the independent systems 
over HI and H 2 ,  i.e. let W (  a 0 b )  = W( a )  0 W (  b )  with cyclic vector w O w ,  represented 
by a product density matrix on T(Hl@ H 2 ) .  

Let 

$(a  @ b )  = W( *b@cb) a a  
with cyclic vector w O w, be a, new Weyl system over HI @ H 2  ( a  E H, b E H ) ,  and let 
W'(a )  = @(a@O), W"(a)  = W(O@a), restricted to the cyclic subspace generated from 
w 0 w. Note that W', W" are cyclic equivalent, since w is even and that TU is the state 
giving either of these Weyl systems by the GNS construction. 

Suppose first that w is quasi-free, of mean 0. Then 

w ( w ( a ) ) = e x p ( - % a ,  Q a ) )  
where Q is a quadratic form on 2. Then 

(WOW)(  W ( a @  b ) )  = w (  W(a) )w(  W ( b ) )  

=exp(-t(a,  Qa)-$(b,  Qb))  

= ( w O w ) ( $ ( a @ b ) ) .  

Putting b =Ogives w (  W ( a ) )  = W O W (  W ' ( a ) )  = TU( W ( a ) ) ,  so TW = w if w is quasi-free. 
Hence, a fortiori, S(TW) = S ( o ) .  

For the converse, suppose w is any even regular state, and let S ( w ) ,  S ' ( w ) ,  S" (w)  
be the entropies of the states given by the Weyl systems W, W' ,  W", on the cyclic 
space generated from w O w. We have 

2 S ( w )  = S( w O w )  G S ' ( w )  + S " ( w )  = 2S ' (w)  

= 2s( TU). 

Here we use the fact that the entropy of a density matrix on r( XI@ X2)  = r( 2 , ) O  
r( X 2 )  = r( 3") O r (  W )  is less than or equal to the sum of the two marginal entropies. 
Since S(T"W) 5 S ( w )  for all n we have limn.+= S(T"W) 5 S ( w ) ;  therefore S ( w o )  5 S ( w ) ,  
by theorem 4. 

It remains to show that if S ( w q )  = S ( w ) ,  then w = wq. I t  is enough to show that 
if S(TW) = S ( w )  then w = wq. Indeed, the inequality 2 S S  S'+ S" is an equality only 
if W' and W" are independent, i.e. W( a 0 b )  = W'( a )  0 W (  b )  and 

( W O W ) (  @(a@ b ) )  = w' (  W'(a))wtf(  W"(b) ) .  

Then l e t f ( a ) = w ( W ( a ) ) ,  g ( a ) = ( w O w ) (  W(aO0) ) .  Then, since 

we have, if W',  W are independent: 
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for all a, b €  2. In particular g ( a ) ’ = f ( d a ) ,  i.e. f ( a )  = g ( a / d ) ’ .  This gives the 
functional equation for x,  y E 2: 

Since w is regular, g is continuous (on finite-dimensional spaces Z )  and so near the 
origin a branch of G ( x )  = log g(x) can be defined such that 

G ( x )  + G ( y ) = 2 [ G (7) + G (?)I (5.2) 

Now (5.2) is the Appolonius equality and so G is a quadratic form, i.e. w is Gaussian 
so w = wo.  This proves theorem 5. This is a quantum version of Bernstein’s theorem 
[27]. A similar result under stronger assumptions was ‘proved by Lindsay [28]. 

The proof of Bernstein’s theorem given in [27] cannot be taken over immediately 
since it assumes x, y . .  . are real variables rather than elements of a complex Hilbert 
space. There is a version of Bernstein’s theorem in the even more general setting of 
states on a Borchers algebra as described in [9]. Namely, if A and B are independent 
identical quantised fields such that A + B and A - B are independent, then A (and so 
B )  is quasi-free. I thank G C Hegerfeldt for discussions on this result. There is a 
similar easy result for the CAR and Clifford cases. 
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